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Operator dh/sXI dx2 * * - lxn + a (xi X2 . * Xn ) 

By H. M. Stemnberg and J. B. Diaz 

1. Introduction. Riemann's method [1] is, in principle, well suited for the nu- 
merical solution of boundary value problems for the hyperbolic differential equation 

(1.1) a2U/dIX1X2 + a(x1, X2)U = F(xi, X2). 

One first finds the Riemann function, which is the solution of a homogeneous 
adjoint equation subject to simple boundary conditions that are independent of 
the given boundary data. The solution of (1.1), for any appropriate boundary data, 
can then be obtained by evaluating a definite integral, where the Riemann function 
and the boundary data appear in the integrand. 

The main obstacle to the use of this method for numerical computation has been 
the difficulty in finding the Riemann function. It was pointed out in a 1947 paper by 
Cohn [2] that, aside from a(xi, X2) = constant and a(xi, X2) = k(k - 1) 
* (xI + x2f2, which was treated by Riemann, there are very few cases where expres- 
sions for the Riemann function have been obtained. One can, of course, use the 
Picard method of successive approximations, but this is usually not practical. In 
this paper we derive a simple recurrence formula for the Riemann function, for the 
case where a(xi, X2) can be expanded in a Taylor series about the point where the 
solution is sought. 

We consider here the Riemann function for the operator L in the n dimensional 
analogue of (1.1), 
(1.2) L(u) = CnU/C1XOX2 ... **xn + a(xi, x2, X * *, )u = F (xi, x2, Xn), 

It was shown by Bianchi [3], [4], [5] and Niccoletti [6], who treated the more 
general linear hyperbolic equation containing pure mixed derivatives of all orders 
through the nth, that Riemann's method can be extended to this case. The solutions 
of the characteristic value and the Cauchy problem for (1.2) are discussed in detail 
in [7]. The Riemann function v for the operator L in (1.2) can be defined by the 
integral equation 

V( XI x2 X2 * .. * Xn ,E1 X 321 .. * * X1n) 

1 t2 n 

VQI 01 t2 * - - X y n ,E1X#2 ***f Fn) dtidt2 ... dtn. 

The solution of the characteristic value problem for (1.2) can, for example, be 
written 

U(#31 X 32 X n **X ) = 2(13 X f32 f3n) 
P1I 2 On 

(1.4) + .JL . J V(XI, X2X** Xn ,X:1 E 32 X f3n) 

[F- af] (xi X2, * * ,xn ) dx,dx2 ... dxnX 
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where u is the solution of O"u/Cx1x1X2 * *xn =-0 satisfying the data given on the 
hyperplanes xi = ai - 

The present discussion is confined to the case where the function 
a(xi , x2, * * *, x") is expandable about the point (01,02, . . - , *A) in a Taylor series 
valid in the region I xi- di I < ri'. This is equivalent to the assumption that 
a(x1, X2, * , xn) is an analytic function of n complex variables. The Taylor series 
for v then has the same region of convergence as the series for a (Section 4). Less 
stringent regularity conditions can be applied to the function F and the given 
boundary data. 

2. The Recurrence Formula. To fix the ideas, the recurrence formula fbr v will 
be obtained for the one dimensional case first. Suppose v is expandable in the 
Taylor series 

00 1 (3Vl 
(2.1) v=1 + fi(x - )i, fi = 1 

From (1.3), 

av/ax]p= [a(x)v(x:3)]-= a(=), 

(2.2) O2v/Ix2]-,4 = d(av)/dxj, = [adv/dx + vOa/Ox],#, 

tv/Ox'z]...= Otl(av)/OXtlx'] = a(fl)a-1lv/Ox-lJ + 

This method for finding the coefficient fi in (2.1), from the previous ones, was 
proposed by du Bois Reymond [8] for the two dimensional case. 

Since all the derivatives dta/Oxt are required in (2.2), one might as well use the 
essentially identical, but simpler, procedure which consists of taking 

(2.3) a(x) = Za,(x - )i: l = 

together with (2.1), inserting these in (1.3) and equating coefficients. The result is 
the recurrence formula 

i-1 
(2.4) if= ai--kfk. 

k=O 

For the higher dimensional cases, the analogue of (2.4) is a convenient and practical 
way to get the Riemann function. Its merit lies in the fact that the same coefficients 
are not computed over and over again, as in the method of successive approxima- 
tions. 

For the Taylor series expansion of v in the n dimensional case let 

(2.5) b(xi, x2, ... x") (-)n+la(xi, x2 , ), 

so that, from (1.3) 

(2.6) V,12...n= bv, V(Xl , X2 Xi. i ix Xi4i2 x * 1X 

Let 
00 00 00 

(2.7) b = Z 2 .. E bili2.-.(in(X3I#)il(X2 - (2)i2 ... (xn, in, 
i1=O i2=? in-? 
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and 
00 00 00 

(2.8) V E = j ... E filZ2... n(xl- j_ 1)"(X2- 32)i2 (Xn - On))tn 
i1=O i2=0 in=O 

where 

(2.9) ~~~~~~ *~~~~ 1 ociil+i2+... +inb (2.9) bili2 ...= ;! i2! * * in! . aX1OXi2 ...dXaXJx1n]kOkk,2, 
* 

2. n 

and 

(2.10) ff^2 in = il! i2! ... in! a 0X1'2 n.. Jxk= k=1, 2, n 

Here, from (1.3), foo...o = 1, and any otherfii2 .. invanishes if at least one of the i's 
is zero. 

The multiplication of (2.7) and (2.8) and the insertion of the result in (2.6) 
leads to the recurrence formula for the coefficients in (2.8), namely, 

il1-1 i 2-1 in-1 

(2.11 ) i1i2 * *ilfil2 ........ in = E E ... E bil-l-k, i2-1-k2 '...........i... n-l-knfklk2.. kn- 
kj=O k2=0 kn=O 

Once the Riemann function, corresponding to a particular function 
a(x1, x2, ***, xn), is known, the characteristic boundary value problem, for ex- 
ample, is reduced to one of evaluating a multiple integral [see (1.4)]. The numerical 
computation proceeds as follows: For a fixed point (j3 , 32 , . . . , 3n) at which the 
solution is sought, the coefficients fli2 ... in are calculated, to any desired accuracy, 
from the recurrence formula (2.11). In general, these coefficients will be functions of 

1 X 132 , . I On. The grid points (xl, x2, * * *, Xn) to be used in evaluating the 
integral in (1.4) are then selected. For each of these points v(xi, X2, . . . Xn 13i1 

132, X - 
* 13n) is calculated, using (2.8), and stored. The solution of (1.2) at the 

point (,13, 12 , * * * , 1n) is then obtained for any appropriate set of boundary data, 
by the numerical integration of (1.4), using the stored values of v. The same v can 
also be used for the solution of the Cauchy problem for (1.2). Here, too, the solution 
can be expressed in terms of an integral containing v [7]. 

3. Examples. 
A. To test the method, the recurrence formula (2.11) is used here to calculate 

the Riemann function v for a case where v is known explicitly, namely, 

(3.1) L(u) = - 2U/aX1X2 - (2/(x1 + X2)2)U. 

Here, the Riemann function, which must satisfy 

(3.2) a2v/ax1aX2 - [2/(xl + x2)2]v _ 0, v(x1, 132:31, 132) = V(11, X2:01, 102) - 1. 

is 

(3.3) v(x1, X2 :1, 2) 
- 2 (x + 01)(Xl + 02) 

(Xl + X2)(1 + 132) 

For comparison with (3.3), (2.11) and (2.7) were used to calculate v(x1, X2:1, 1) 
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for several points (xl, x2). In two dimensions, the recurrence formula (2.11; is 
il-1 i2-1 

ilifi i2 = E X bi,-1-k1.i2-1-kJkjk2 

( 3.4 ) kl=O k2-0 

foo= 1, foj = fjo-O for j # 0. 

For b 2/(xi + x2)2 the coefficients in (2.7) are 

(3.5) bi, = 2(- 1)ii'(i + j + 1)!/[i!j!(il3 + 022)2+i+j]. 

The coefficients fAi2 in the expansion (2.8) for v(xi, X2: 1, 1) are listed for 
i1 , i2 -10 in Table I. In Table II, the exact values of v(xl, x2:1, 1), obtained with 
(3.3), are listed for several values of (xl, x2), together with the nth partial sums 
calculated from 

n n 
(3.6) (n= 1 + E Z fili2(xl - 1)i'(X2 - 1 ) i2. 

il-1 i2-1 

B. It is evident from (1.4), and the analogous formula for the solution of the 
Cauchy problem [7], that the value of the solution of (1.2) at the single point 
(f1 , 02 X * * * , On) can be found, for any appropriate boundary data, if the Riemann 
function v is known for that point. Consider the operator 

(3.7) anlaXlaX2 * *xn + a(or), 

where 

(3.8) = x1x2 ... Xn. 

To find the Riemann function v for (f1, 02 , ... , *OX) = (0, 0, ... , 0) let 

(3.9) b(ar)= (_j)na(a), 

(3.10) b = E biZ 
i=o 

TABLE II 
The nth partial sums and the exact values of the Riemann function v(xl, X2: 1, 1) 

for the operator 82/8X18X2 - 2/(xi + X2)2. 

(Xl, X2) 

(.8, .8) (.6, .6) (.4, .4) (.2, .2) 

n - 1 1.020000 1.080000 1.180000 1.320000 
2 1.024400 1.118400 1.320400 1.678400 
3 1.024932 1.129408 1.390708 1.952832 
4 1.024992 1.132326 1.423464 2.151078 
5 1.024999 1.133078 1.438273 2.290932 
6 1.025000 1.133269 1.444859 2.388318 
7 1.025000 1;.133317 1.447759 2.455571 
8 1.025000 1.133329 1.449027 2.501749 
9 1.025000 1.133332 1.449579 2.533320 

10 1.025000 1.133333 1.449818 2.554834 

Exact value 1.025000 1.133333 1.450000 2.600000 
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and 

(3.11) v = 1 + Zfizo 

For this special case, the recurrence formula (2.11) becomes 
i-i 

(3.12) ?,fi = E bZ-1--fk 
k=O 

Now suppose 

(3.13) b = lK a 
1 - K 

where K1 and K2 are constants. Here, the coefficients in (3.10) are 

(3.14) bi = K1K2i, 1K2oI < 1. 

From (3.14) and the recurrence formula (3.12), 

(3.15) fi = [K1 + K2(i - )nfi_l 

Now, from (3.15), 

(i - 1)nfi-i = [K1 + K2(i-2)n]fi-2 

(i - 2)nfi2 = [K1 + K2(i- 3) fnft3 X 

(3.16) ....................... 

2f2 = (K1 + K2)fl, 

fi = K1. 

Multiplication of the terms in (3.15) and (3.16) leads to the coefficients in the ex- 
pansion for v(xi, X2 , , Xn: 0, 0, * , 0), namely, 

(3.17) fi = K1(K1 + K2)(K1 + 2nK2) ... (K1 + (i- -)nK2)/[i lln. 

The substitution v = v(a) in (2.6), with a- (-1_)n+Kl/(1 - K2a), results in 
an ordinary differential equation for which 

(3.18) v = 1 + Zfixi, 
i=l 

with fi given by (3.17), is a particular solution. For example, in two dimensions 
(3.18) is the solution of the hypergeometric equation 

(3.19) d2+ dv V = K, v(O)=1, do do 

and for n = 3, (3.18) is the solution of 

(3.20) a d3v+ 3a d + K v = O, v(O) =1. 

4. The Convergence of the Expansion for the Riemann Function. The series 
(2.8) for the Riemann function will converge in the open region about 
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(1 , 12, ... , ** ,n) where (2.7), the expansion for b, converges. This can be shown as 
follows: Suppose that (2.7) converges in the region xi- ,i I < ri'. Let M be the 
maximum I bi,- ...in in this region and let 

M 
(4.1) B_ - r_l_ X2_-_ r Xn- n 

where 0 < r, < ri'. Denote the expansion for B in I xi-,Bi < ri by 
00 00 00 

(4.2) B = E E E Bi2. in(Xl- )i(x2 - 2)i2 ... (xn - On) in, 
il=0 i2=0 i,=O 

and confine the discussion to the region ji - Oi I < ri < ri'. Here (4.2) dominates 
(2.7), i.e., 

(4.3) Btt bl2i 
The solution of 

4aV/Ix19x2 ... Oxn = BV, 

V(x1, X2, ... * Xi-t ) ,i ) Xi * Xn . X l ,f2* ... * 3n) = 1 

can, in its domain of convergence, be written 

00 00 00 

(4.5) V- 1 + Z E ***iE Fiji2...in(XI - 131) i(x2 - f2)i2 * (Xn -3"'i 
i 1=1 i 2=1 in=l 

The coefficients in (4.5) are obtained from (2.11) as 

il-1 i2-1 in-l 

(4.6)iii2 .. 
iFiji2--' 

k 1=? k2 
.. 

EBil-l-k 1 
. i2-1-k 2 t., i,-l-knFk lk 2..kn ko=O k2-0 kc,,0 

Since the coefficients Bii2. ...in are positive, it follows from (4.3) and (4.6) that (4.5) 
dominates (2.8), i.e., 

(4 7) Fiji2..itn > 1 ...li in 

To find the region of convergence of (4.5), consider the constant coefficient equatipn 

(4.8) onV/CJaI2 ... =ln = MV. 

Bianchi [3] obtained the solution of (4.8) as 

V(6 1 X 2 X n :#l 2 02 ).. * * On) 

= 1 + fI [M'[(ll - 3)(6 - 12) ... (' ' - -n)] /(j!)']. 
j=l 

This result, (4.9), is also evident as a special case of Example B, Section 3, with 

K2 = 0. The transformations 

(4.10) - = -ri ln [1 - xi - (] = -i _ik 

convert (4.8) into (4.4). Fromi (4.9) and (4.10), the solution of (4.4) can be written 
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(4.11) V = 1 + {(1/j!)n [(-_)nMrl r2 ... rn i in (1- Xi 

Since (4.5) is equivalent to (4.11), it converges in the region I xi - I < ri . 
The series (2.8) for the Riemann function, since it is domainated by (4.5), must 
therefore converge in the region j xi- f < ri < ri'. 
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